Different methods for combining/merging DataFrame in Pandas

Here are different methods available for combining/merging data frames in pandas

  1. Concatenation using pd.concat()
  2. Merging using pd.merge()
  3. Joining using df.join()
  4. Combining DataFrames using df.combine_first()
  5. Updating DataFrames using df.update()

Merging two DataFrames in Pandas refers to combining the data from two or more separate DataFrames into a single DataFrame. There are several methods for merging DataFrames in Pandas, including:

  1. pd.concat(): This method can be used to concatenate two or more DataFrames along either row (axis=0) or columns (axis=1). For example:
import pandas as pd
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                   index=[0, 1, 2, 3])
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']},
                   index=[4, 5, 6, 7])

result = pd.concat([df1, df2])
import pandas as pd
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                   index=[0, 1, 2, 3])
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']},
                   index=[4, 5, 6, 7])

result = pd.concat([df1, df2])

Leave a Comment

Your email address will not be published. Required fields are marked *